Particle Interactions in Ben6993’s Preon Model #5

Particle Interactions in Ben6993’s Preon Model #5

Preons

Preon model #5 is described in detail in Preon model 5: the building blocks of elementary particles.  Preons can be grouped into neutral-coloured units and coloured sub-units, and only these units/sub-units need to be considered in interactions, as a preon in a unit/sub-unit is forever in that unit/sub-unit.

Elementary particles can have the following properties: (electric charge, [chiral] spin, weak isospin, colour charge).  Particles also have a specific number of units/sub-units.  The total properties of a particle can be obtained by summing properties across all of its unit/sub-units.

 

Preon Units and Sub-Units

To assist in calculating the properties of particles by summing across units/sub-units, the following table shows the properties of the individual units/sub-units.

 

Table of properties of preon units and sub-units

 

Unit/sub-unit Number of preons Electric charge Spin Weak isospin Colour
A 24 -1/2 -1/2 -1/2 neutral
B 24 -1/2 +1/2 0 neutral
C 24 -1/2 0 0 neutral
A’ 24 +1/2 +1/2 +1/2 neutral
B’ 24 +1/2 -1/2 0 neutral
C’ 24 +1/2 0 0 neutral
Cr 8 -1/6 0 0 red
Cg 8 -1/6 0 0 green
Cb 8 -1/6 0 0 blue
C’r’ 8 +1/6 0 0 antired
C’g’ 8 +1/6 0 0 antigreen
C’b’ 8 +1/6 0 0 antiblue


 ‘ denotes antimatter

To check that the properties of the units are correct, one needs to refer to Preon model 5: the building blocks of elementary particles  where the properties of the individual preons are listed together with tables showing which preons are contained in which unit/sub-units.

 

Summary of interactions considered

  1.   e-   –>   e-  +  γ
  2.   e-  +  γ –>   e-
  3.   e-  + e+ –>    γ
  4.   e-  + e+ –>    vacuum
  5.   νe –> Z + νe
  6.   d –>  d + g
  7.   d –> W- + u
  8.   W-  –> e- + ν’e
  9.   Z –> e- + e+
  10. t –> W+ + b
  11. t –> W+ + s
  12. t –> W+ + d
  13. Z –> νe + ν’e
  14. Z –> d + d’
  15. H –> Z + Z
  16. H –>  W-  +  W+
  17. Electron antineutrino –> sterile muon antineutrino
  18. Muon antineutrino –> sterile tau antineutrino
  19. Sterile electron antineutrino –> muon antineutrino
  20. Sterile muon antineutrino –> tau antineutrino
  21. Gluon interactions

Interactions

1.  e-   –>   e-  +  γ

Parentheses are: (electric charge, spin, weak isospin)

(-1, -0.5, -0.5) –> (-1, 0.5, 0) + (0, -1, 0)

LH electron –>  RH electron + γ-

However, 4 preon units    –>    4 units   +   4 units   is unbalanced in preon numbers, and also the weak isospins do not balance, so a complete interaction is:

(0, 0, 0.5) + (-1, -0.5, -0.5) –> (-1, 0.5, 0) + (0, -1, 0)

¼ Higgs+   +  LH electron –>  RH electron + γ-

Where ¼Higgs+ has the same properties as the Higgs+ {i.e. no electric charge and no spin and weak isospin of +0.5}  but with only ¼ of its preons.

 

So we have:

A’B’CC + ACBB’  –>  BCAA’ + B’B’CC

I.e. ¼ Higgs+   +  LH electron –>  RH electron + γ-

 

2.  e-  +  γ –>   e- 

Parentheses are: (electric charge, spin, weak isospin)

 

(-1, -0.5, -0.5) + (0, 1, 0) –> (-1, 0.5, 0)

LH electron + γ+  –>  RH electron

However, 4 preon units  +   4 units     –>    4 units   is unbalanced, and also the weak isospins do not balance, so a complete interaction is:

(-1, -0.5, -0.5)   + (0, 1, 0)  –> (-1, 0.5, 0)   + (0, 0, -0.5)

LH electron   + γ+  –>  RH electron + ¼ Higgs-

ACAA’  + BBC’C’ –>  BCAA’ + ABC’C’

 

Note that a LH electron can be any one of three forms:

ACAA’,  ACBB’ or ACCC’.  The forms AA’, BB’ and CC’ are neutral in properties and act like neutral ‘bulk filler’ content.

 

3.  e-  + e+ –>    γ

Parentheses are: (electric charge, spin, weak isospin)

(-1, -0.5, -0.5)   +(1, -0.5, 0)    –>  (0, -1, 0)   + (0, 0, -0.5)

LH electron   + LH positron    –>   γ-   +   ¼ Higgs-

For example, ACBB’ + B’C’CC’  –>  B’B’CC + ABC’C’

 

4.  e-  + e+ –>    vacuum

Parentheses are: (electric charge, spin, weak isospin)

(-1, -0.5, -0.5)   +(1, 0.5, 0.5)    –>  (0, 0, 0)

4 preon units + 4 preon units –>  8 preon units

LH electron   + RH positron –>  vacuum (second generation axion boson)

For example, ACBB’ + A’C’CC’  –>  AA’BB’CC’CC’

where AA’ BB’ CC’ CC’ is a completely neutral axion and returns to the vacuum.

 

5.  νe –> Z + νe

Parentheses are: (electric charge, spin, weak isospin)

(0, 0.5, 0.5) + (0, 0, -0.5)  –>  (0, 1, 0)   +  (0, -0.5, 0)

RH νe  +  ½Higgs-    –>    Z+  +  LH  νe

For example, A’CAA’ + ABC’C’BB’AA’   –>  BBC’C’AA’AA’ + B’CAA’

4 units + 8 units   –>  8 units + 4 units

 

6.  down –>  down + gluon

Parentheses are: (electric charge, spin, weak isospin, colour)

(-0.33, -0.5, -0.5, red) + (0, 0, 0.5)  –> (-0.33, 0.5, 0, red) + (0, -1, 0)

red L.H. d  +  Higgs+    –>    red R.H. d  +  g-

For example, AC’g’CrC’b’ BB’ + A’B’CC AA’ BB’ CC’ AA’ BB’ CC’   –>

BC’g’CrC’b’ AA’ +  B’B’CC AA’ BB’ CC’ AA’ BB’ CC’

4 units + 16 units   –>  4 units + 16 units

 

7.  down  –>  W-  +  up

Parentheses are: (electric charge, spin, weak isospin, [colour if applicable])

(0, 0, 0) +  (-0.33, -0.5, -0.5, red)  –> (-1, -1, -1) + (0.67, 0.5, 0.5, red)

vacuum + red L.H. down               –>    W-   +  red RH up

8 preon units  +    4 units              –>   8 units  +  4 units

For example, AA’ BB’ CC’ AA’ + AC’g’CrC’b’ AA’ –>  AA AA’ BB’ CC’  +  A’C’g’CrC’b’ AA’

 

8.  W-  –> e- + ν’e

Parentheses are: (electric charge, spin, weak isospin)

(-1, -1, -1)  –> (-1, -0.5, -0.5) + (0, -0.5, -0.5)

W-  –> LH e- + LH ν’e

8 units    –>  4 units  +  4 units

For example, AA AA’ BB’ CC’   –> ACBB’ + AC’ AA’

 

9.  Z –> e- + e+

Parentheses are: (electric charge, spin, weak isospin)

Z-  + ¼H-  –>  LH e-  +  LH e+  +  vacuum (or first generation axion boson)

(0, -1, 0)  +(0, 0, -0.5) –> (-1, -0.5, -0.5) + (1, -0.5, 0) + (0, 0, 0)

8 units   + 4 units         –>  4 units   +   4 units   + 4 units

For example, B’B’CC AA’ BB’   +  ABC’C’   –>   AC CC’   +  B’C’ BB’ +     AA’ BB’

 

10.  top –> W+ + bottom

Parentheses are: (electric charge, spin, weak isospin, [colour if applicable])

(0, 0, 0) +  (0.67, 0.5, 0.5, red)  –> (1, 1, 1) + (-0.33, -0.5, -0.5, red)

vacuum + red R.H. top               –>    W+   +  red LH bottom

8 preon units  +    20 units              –>   8 units  +  20 units

For example, AA’ BB’ CC’ AA’ + A’C’g’CrC’b’ AA’ BB’CC’AA’BB’CC’AA’BB’CC’ –>  A’A’ AA’ BB’ CC’  +  AC’g’CrC’b’ AA’BB’CC’AA’BB’CC’AA’BB’CC’

 

11.  top –> W+ + strange

Parentheses are: (electric charge, spin, weak isospin, [colour if applicable])

0.67, 0.5, 0.5, red)  –> (1, 1, 1) + (-0.33, -0.5, -0.5, red)

red R.H. top               –>    W+   +  red LH strange

20 units              –>   8 units  +  12 units

For example,  A’C’g’CrC’b’ AA’ BB’CC’AA’BB’CC’AA’BB’CC’ –>  A’A’ AA’ BB’ CC’  +

AC’g’CrC’b’ BB’CC’AA’BB’CC’

 

12.  top –> W+ + down

Parentheses are: (electric charge, spin, weak isospin, [colour if applicable])

(0.67, 0.5, 0.5, red)  –> (1, 1, 1) + (-0.33, -0.5, -0.5, red)  +(0, 0, 0)

red R.H. top               –>    W+   +  red LH down +  vacuum (or second generation axion                                                                                                                                                        boson)

20 units              –>   8 units  +  4 units    +  8 units

For example,  A’C’g’CrC’b’ AA’ BB’CC’AA’BB’CC’AA’BB’CC’ –>  A’A’ AA’ BB’ CC’  +

AC’g’CrC’b’ BB’   +  CC’AA’BB’CC’

 

13.  Z –> νe + ν’e

Parentheses are: (electric charge, spin, weak isospin)

Z-  + ¼H-  –>  LH ν’e +  LH νe +  vacuum (or first generation axion boson)

(0, -1, 0)  +(0, 0, -0.5) –> (0, -0.5, -0.5) + (0, -0.5, 0) +(0, 0, 0)

8 units   + 4 units         –>  4 units   +   4 units   + 4 units

For example, B’B’CC AA’ BB’   +  ABC’C’   –>   AC’ CC’   +  B’C BB’ +     AA’ BB’

 

14.  Z –> d + d’

Parentheses are: (electric charge, spin, weak isospin, [colour if applicable])

 

Z-  + ¼H-  –>  red LH d +  antired LH d’ +  vacuum (or first generation axion boson)

(0, -1, 0)  +(0, 0, -0.5) –> (-0.33, -0.5, -0.5, red) + (0.33, -0.5, 0, antired) +(0, 0, 0)

8 units   + 4 units         –>  4 units   +   4 units   + 4 units

For example, B’B’CC AA’ BB’   +  ABC’C’   –>   AC’g’CrC’b’ X +  B’CgCbC’r’ X  +     AA’ BB’

{Note that C’g’CrC’b’ + CgCbC’r’ = CrCgCb C’r’C’g’C’b’ = CC’}

So,  B’B’CC AA’ BB’   +  ABC’C’   –>   AB’CC’ BB’CC’    +     AA’ BB’

 

15.  Higgs –> Z + Z

Parentheses are: (electric charge, spin, weak isospin)

 

H-   + ¼H+   –> Z-  +  Z+  +  vacuum (or first generation axion boson)

(0, 0, -0.5) + (0, 0, 0.5)   –>  (0, -1, 0) + (0, 1, 0) + (0, 0, 0)

16 units  + 4 units  –>  8 units  +  8 units + 4 units

For example, ABC’C’ AA’ BB’ CC’ AA’ BB’ CC’ + A’B’CC   –> B’B’CC AA’ BB’ + BBC’C’ CC’ AA’  +  AA’ CC’

 

16.  Higgs –>  W-  +  W+

Parentheses are: (electric charge, spin, weak isospin)

H-   + ¼H+   –> W-  +  W+  +  vacuum (or first generation axion boson)

(0, 0, -0.5) + (0, 0, 0.5)   –>  (-1, -1, -1) + (1, 1, 1) + (0, 0, 0)

16 units  + 4 units  –>  8 units  +  8 units + 4 units

For example, ABC’C’ AA’ BB’ CC’ AA’ BB’ CC’ + A’B’CC   –> AACC’ AA’ BB’ + A’A’ CC’ CC’ BB’  +  BB’ CC’

 

17.  Electron antineutrino –> sterile muon antineutrino

Higgs+   + LH electron antineutrino –>  sterile muon RH antineutrino + Z-

(0, 0, 0.5) + (0, -0.5, -0.5)   –>   (0, 0.5, 0)   + (0, -1, 0)

16 units  +  4 units               –>   12 units     +  8 units

A’B’CC  BB’AA’BB’CC’AA’BB’  +  AC’ CC’  –>  BC’ CC’ AA’AA’BB’CC’ + B’B’CC AA’BB’

 

18.  Muon antineutrino –> sterile tau antineutrino

Parentheses are: (electric charge, spin, weak isospin)

Higgs +     LH muon antineutrino –>  sterile tau RH antineutrino + Z-

(0, 0, 0.5) + (0, -0.5, -0.5)   –>   (0, 0.5, 0)   + (0, -1, 0)

16 units  +  12 units               –>   20 units     +  8 units

A’B’CC  BB’AA’BB’CC’AA’BB’  +  AC’ CC’AA’BB’CC’AA’  –>

BC’ CC’ AA’AA’BB’CC’AA’BB’CC’AA’ + B’B’CC AA’BB’

 

19.  Sterile electron antineutrino –> muon antineutrino

Parentheses are: (electric charge, spin, weak isospin)

Higgs- + RH sterile electron antineutrino –>  muon LH antineutrino + Z+

(0, 0, -0.5) + (0, 0.5, 0)            –>  (0, -0.5, -0.5) + (0, 1, 0)

16 units  +  4 units               –>   12 units     +  8 units

ABC’C’  BB’AA’BB’CC’AA’BB’  +  BC’ CC’  –>  AC’ CC’ AA’AA’BB’CC’ + BBC’C’ BB’BB’

 

20.  Sterile muon antineutrino –> tau antineutrino

Parentheses are: (electric charge, spin, weak isospin)

Higgs- + RH sterile muon antineutrino –>  tau LH antineutrino + Z+

(0, 0, -0.5) + (0, 0.5, 0)            –>  (0, -0.5, -0.5) + (0, 1, 0)

16 units  +  12 units               –>   20 units     +  8 units

ABC’C’  BB’AA’BB’CC’AA’BB’  +  BC’ CC’AA’BB’CC’AA’  –>

AC’ CC’ AA’AA’BB’CC’AA’BB’CC’AA’ + BBC’C’ BB’BB’

 

21.  Gluon interactions

Parentheses are: (electric charge, spin, weak isospin).

In preon model #5, three forms of the gluon: rr’-gg’, rr’-bb’ and gg’-bb’ are three different faces of one complex structure.  This arises because a red quark in my model is not purely red, but is dominantly red.  And an rr’ pair is completely neutral in colour which could be reassembled into a gg’ pair or a gg’ pair of quarks.

For example B’B’CC gives the basic structure for a photon or gluon with (0, -1, 0)  and BBC’C’ gives the photon or  gluon with the opposite spin: (0, 1, 0).  But the gluon needs to be bulked out with another 6 pairs of neutral preon units, e.g.  B’B’CC plus AA’ BB’ CC’ AA’ BB’ CC’.

Gluon (1) could be say B’B’CC & CC’ & CC’ & AA’ & AA’ & BB’ & BB’

Gluon (2) could be say B’B’CC & CC’ & AA’ & AA’ & AA’ & BB’ & BB’

A  gluon contains enough preons to form a quark within its contents, where:

ACgCbC’r’ & AA’ is an antired antiup antiquark {where AA’ is just one possibility from AA’, BB’ or CC’}

A’C’g’C’b’Cr & AA’ is a red up quark

B’CgC’r’C’b’ & BB’ is a green up quark

BC’g’CrCb & BB’ is an antigreen antiup antiquark

 

The total of the colour sub-units, alone, for these four quarks is:

Cg Cb C’r’ & C’g’ C’b’ Cr’ & Cg C’r’ C’b’ & Cg’ Cr Cb

which is equivalent to  CC’ & CC’.

These four quarks together make AAA’  A’AA’ B’BB’ BBB’ plus the CC’ & CC’,

i.e. makes AA’ AA’ AA’ BB’ BB’ BB’ CC’ CC’  which is eight pairs of neutral units.  This has as many preons as the gluon or the higgs, but is neither:  it is a neutral vacuum particle or field.

For a gluon- to be able simultaneously to play the roles of rr’ and gg’ (i.e. rr’+gg’), it would need CC’ & CC’ in its composition.  Any gluon- must always have CC in its basic composition so an extra C’C’ is needed in its scalar unit pairs, ie it needs CC’ & CC’ as two of its scalar pairs.  So Gluon (1) could do this job.

Gluon (2) only contains the following C units: CC & CC’, so Gluon(2) only has one pair of CC’ units and cannot make a gluon of the form rr’+gg’.  However, Gluon(2)  can use the one CC’ pair to make either a rr’ or a gg’ (or a bb’).  So Gluon(2) can make a gluon of the form rr’-gg’.

 

Pros and Cons – dark matter, lightweight higgs forms and neutral blocks units forming vacuum fields

My earlier preon models were very simple and I took it as axiomatic that:  electron + positron = photon+  +  photon-.  But in these earlier models, first the electric charge was modelled, then gradually the spin was modelled better, and finally the weak isospin was modelled well.  But then the modelling of spin for the bosons had to be corrected.  At that stage the axiomatic assumption that the preons in an e- and e+ could simply be rearranged into the preons of two photons was lost.  That loss of simplicity still seems like a negative feature.  However, it is possibly a positive feature as it requires the use of a ¼higgs to allow an electron to emit a photon [see interaction 1].  That could be a ½higgs or a full higgs depending on what energy is put into the interaction but I have assumed that the ¼ higgs is a possibility in lower energy interactions as the preon model allows a ¼ higgs+ to be made from four units: A’B’CC; the full higgs needing 16 units.

The revision of the boson structure in the model also prevented the original axiomatic assumption for a second reason.  The two photons are: B’B’CC and BBC’C’ which do not contain an A or A’. The left-hand electron and right-hand positron contain the A and A’ respectively and so cannot be formed from preons of photons alone.  Interaction 9 shows how the same feature requires the use of vacuum particles/fields.  The Z particle in model #5 is simply the photon with two extra pairs of neutral preon units, e.g.  photon+AA’BB’ .  Likewise, the gluon is a photon plus six extra pairs of neutral preons, e.g. photon+AA’BB’CC’AA’BB’CC’.  In interaction 9, a ¼higgs-  {i.e. ABC’C’} is one of the particles going into the interaction and a vacuum particle/field (or axion boson) is emitted {AA’BB’}.  The  ¼higgs and ½higgs are candidates for dark matter.  The full higgs was only detected by its decay paths whereas the ¼higgs cannot decay and it is already participating {according to model #5} in ordinary, well known interactions as a silent partner.

 

24 May 2014

(Revised 29 September 2014 to include the term axion for the scalar boson or vacuum)

Manchester, UK

Advertisements
Posted in physics | Tagged , , , , , , , , , , , , , , , , , , , , | Leave a comment

ben6993graph

ben6993graph

Image | Posted on by | 2 Comments

Online dice game to generate elementary particles in Preon Model 5

Online dice game to generate elementary particles in Preon Model 5

GAME  NO LONGER WORKS BECAUSE THE EXCEL FILE TYPE IS NOT ALLOWED ON WORDPRESS.

Attached is an Excel 2007 (.xlsm) file which uses Virtual Basic software

to allow virtual dice to be rolled. Different combinations of rolled dice
generate different elementary particles, according to my Preon Model 5.

Dice game for Model 5 elementary particles

Just download the file and click on appropriate buttons to roll the dice.
4 big dice give electrons, photons and neutrinos.
8 big dice give the Z and W.
12 big dice give the muon and muon neutrino.
16 big dice give the higgs and gluon.
20 big dice give the tauon and tauon neutrino.
3 small dice and three big dice give the up and down quarks
3 small dice and eleven big dice give the charm and strange quarks
3 small dice and nineteen big dice give the top and bottom quarks.
Have fun!
Ben6993
Manchester
England
1 January 2014

(Revised and renamed 14 January 2014)
(Revised 27 January 2014)

Posted in physics | Tagged , , , , , , , , , , , , , , , , , | 3 Comments

Preon Model 5: the building blocks of elementary particles

Preon Model 5: the building blocks of elementary particles

Introduction

In this paper, 48 types of preon are listed.  Preons of various types are arranged in six autonomous blocks or neutral-colour  units with 24 preons per unit in Units A, B, C, A’, B’ and C’.  Two of the neutral-colour units (C and C’) can each be divided into three single-colour sub-units with eight preons per sub-unit (Cr, Cg, Cb, C’r’, C’g’ and C’b’).  Elementary particles are formed when multiples of four units combine, ranging from the left-handed electron (four units: AAA’C) to a right-handed top quark (nineteen units plus three sub-units,  for example:  A’C’g’CrC’b’AA’BB’CC’AA’BB’CC’AA’BB’CC’).

The 48 Preons

The first property of a preon is electrical charge, either + or – charge.  This can be associated with a chiral structure for the preon. Say the negative charge is connected to a left-handed preon, L.  The right-handed preon, R, will have a positive charge.  There are also three colour charges (red [r], green [g] and blue [b]) and three anticolour charges (antired [r’], antigreen [g’] and antiblue [b’]).   Colour charges are connected to the L preon while anticolour charges are connected to the R preon.  Every preon has either spin + or spin – and has weak isospin + or -.  The 24 matter preons can have 24 antimatter preons (denoted L’ and R’) making 48 different preons in total.

Preons can be  labelled as :    Preon (electric charge) ( spin) (weak isospin) (colour charge)      e.g.  R ’ – + – r.

The 48 preons are:

24 preons

L- – -r L–+r L-+-r L-++r
L- – -g L–+g L-+-g L-++g
L- – -b L–+b L-+-b L-++b
R+–r’ R+-+r’ R++-r’ R+++r’
R+–g’ R+-+g’ R++-g’ R+++g’
R+–b’ R+-+b’ R++-b’ R+++b’

 

24 antipreons

L’+–r’ L’+-+r’ L’++-r’ L’+++r’
L’+–g’ L’+-+g’ L’++-g’ L’+++g’
L’+–b’ L’+-+b’ L’++-b’ L’+++b’
R’- – -r R’–+r R’-+-r R’-++r
R’- – -g R’–+g R’-+-g R’-++g
R’- – -b R’–+b R’-+-b R’-++b

(A preon’s electric charge is + or – 1/48; A preon’s spin is + or – 1/48; A preon’s weak isospin is + or – 1/48.)

The six neutral-colour units: A, B, C , A’, B’ and C’

Preon Unit A :  24 preons with equal numbers of types L- – -a, L- – -g, L- – -b,  R’- – -r, R’- – -g and R’- – -b.

Total electric charge -1/2; total spin -1/2; and total weak isospin -1/2

L- – -r L- – -r L- – -r L- – -r
L- – -g L- – -g L- – -g L- – -g
L- – -b L- – -b L- – -b L- – -b
R’- – -r R’- – -r R’- – -r R’- – -r
R’- – -g R’- – -g R’- – -g R’- – -g
R’- – -b R’- – -b R’- – -b R’- – -b

 

Preon Unit B :  48 preons with equal numbers of types L-+-a, L-+-g, L-+-b,  R’-+-r, R’-+-g, R’-+-b and

L-++a, L-++g, L-++b,  R’-++r, R’-++g, R’-++b

Total electric charge -1/2; total spin +1/2; and total weak isospin is zero

L-+-r L-++r L-+-r L-++r
L-+-g L-++g L-+-g L-++g
L-+-b L-++b L-+-b L-++b
R’-+-r R’-++r R’-+-r R’-++r
R’-+-g R’-++g R’-+-g R’-++g
R’-+-b R’-++b R’-+-b R’-++b

 

Preon Unit C :  48 preons with equal numbers of all types of L and R’ preons

Total electric charge -1/2; total spin is zero; and total weak isospin is zero

L- – -r L–+r L-+-r L-++r
L- – -g L–+g L-+-g L-++g
L- – -b L–+b L-+-b L-++b
R’- – -r R’–+r R’-+-r R’-++r
R’- – -g R’–+g R’-+-g R’-++g
R’- – -b R’–+b R’-+-b R’-++b

 

Preon Unit A’ :  48 preons with equal numbers of types L’+++r’, L’+++g’, L’+++b’,  L’+++r’, L’+++g’,  L’+++b’ .

Total electric charge +1/2; total spin +1/2; and total weak isospin +1/2

L’+++r’ L’+++r’ L’+++r’ L’+++r’
L’+++g’ L’+++g’ L’+++g’ L’+++g’
L’+++b’ L’+++b’ L’+++b’ L’+++b’
R+++r’ R+++r’ R+++r’ R+++r’
R+++g’ R+++g’ R+++g’ R+++g’
R+++b’ R+++b’ R+++b’ R+++b’

 

Preon Unit B’ :  48 preons with equal numbers of types L’+–r’, L’+–g’, L’+–b’,  R+–r’, R+–g’, R+–b’ and

L’+-+r’, L’+-+g’, L’+-+b’,  R+-+r’, R+-+g’, R+-+b’

Total electric charge +1/2; total spin -1/2; and total weak isospin is zero

L’+–r’ L’+-+r’ L’+–r’ L’+-+r’
L’+–g’ L’+-+g’ L’+–g’ L’+-+g’
L’+–b’ L’+-+b’ L’+–b’ L’+-+b’
R+–r’ R+-+r’ R+–r’ R+-+r’
R+–g’ R+-+g’ R+–g’ R+-+g’
R+–b’ R+-+b’ R+–b’ R+-+b’

 

Preon Unit C’ :  48 preons with equal numbers of all types of L’ and R preons

Total electric charge +1/2; total spin is zero; and total weak isospin is zero

L’+–r’ L’+-+r’ L’++-r’ L’+++r’
L’+–g’ L’+-+g’ L’++-g’ L’+++g’
L’+–b’ L’+-+b’ L’++-b’ L’+++b’
R+–r’ R+-+r’ R++-r’ R+++r’
R+–g’ R+-+g’ R++-g’ R+++g’
R+–b’ R+-+b’ R++-b’ R+++b’

 

The six colour sub-units: Cr, Cg, Cb, C’r’, C’g’ and C’b’

Preon Unit Cr :  16 red preons with equal numbers of all types of L and R’ preons

Total electric charge -1/6; total spin is zero; and total weak isospin is zero

L- – -r L–+r L-+-r L-++r
R’- – -r R’–+r R’-+-r R’-++r

 

Preon Unit Cg :  16 green preons with equal numbers of all types of L and R’ preons

Total electric charge -1/6; total spin is zero; and total weak isospin is zero

L- – -g L–+g L-+-g L-++g
R’- – -g R’–+g R’-+-g R’-++g

 

Preon Unit Cb :  16 blue preons with equal numbers of all types of L and R’ preons

Total electric charge -1/6; total spin is zero; and total weak isospin is zero

L- – -b L–+b L-+-b L-++b
R’- – -b R’–+b R’-+-b R’-++b

 

Preon Unit C’r’ :  16 antired preons with equal numbers of all types of L’ and R preons

Total electric charge +1/6; total spin is zero; and total weak isospin is zero

L’+–r’ L’+-+r’ L’++-r’ L’+++r’
R+–r’ R+-+r’ R++-r’ R+++r’

 

Preon Unit C’g’ :  16 antigreen preons with equal numbers of all types of L’ and R preons

Total electric charge +1/6; total spin is zero; and total weak isospin is zero

L’+–g’ L’+-+g’ L’++-g’ L’+++g’
R+–g’ R+-+g’ R++-g’ R+++g’

 

Preon Unit C’b’ :  16 antiblue preons with equal numbers of all types of L’ and R preons

Total electric charge +1/6; total spin is zero; and total weak isospin is zero

L’+–b’ L’+-+b’ L’++-b’ L’+++b’
R+–b’ R+-+b’ R++-b’ R+++b’

 

Summary of preon unit and sub-unit properties

Unit/sub-unit Number of preons Electric charge Spin Weak isospin Colour
A 24 -1/2 -1/2 -1/2 neutral
B 24 -1/2 +1/2 0 neutral
C 24 -1/2 0 0 neutral
A’ 24 +1/2 +1/2 +1/2 neutral
B’ 24 +1/2 -1/2 0 neutral
C’ 24 +1/2 0 0 neutral
Cr 8 -1/6 0 0 red
Cg 8 -1/6 0 0 green
Cb 8 -1/6 0 0 blue
C’r’ 8 +1/6 0 0 antired
C’g’ 8 +1/6 0 0 antigreen
C’b’ 8 +1/6 0 0 antiblue


Unit properties of electric charge, spin and weak isospin are simple sums of the values of those properties of the preons in those units .  Every unit and sub-unit contains an equal number of matter and anti-matter preons.

 

 

Calculating particle colour from preon sub-unit colour

Firstpreon color sub-unit Secondpreon color sub-unit Thirdpreon color sub-unit Particle colour
r g b neutral
r g b’ antiblue
r g’ b antigreen
r g’ b’ red
r’ g b antired
r’ g b’ green
r’ g’ b blue
r’ g’ b’ neutral


Index of tables of particles

Particles are  made from combinations of :

four preon units (electron, photon, neutrino)
eight preon units (Z, W)
twelve preon units (muon, muon neutrino)
sixteen preon units (Higgs, gluon)
twenty preon units (tauon, tauon neutrino)
32 preon units (2-Higgs, gluon)
three colour sub-units plus three unit (up, down)
three colour sub-units plus eleven units (charm, strange)
three colour sub-units plus nineteen units (top,bottom)

 

 

 

 

 

 

 

 

Two preon units 

Combinations of only two units, in Model 5, are not elementary particles but show the essential constuents which give the required charge, spin and weak isospin properties of electrons, neutrinos and W particles.   The scalar combinations are important to the model as they form neutral building blocks to add to the two-unit combinations to generate 4-unit or more  particles.

 

21 combinations of two units:

Preon units Electric charge Spin Weak isospin Combination type
AC -1 -0.5 -0.5 l.h.  electron
BC -1 0.5 0 r.h. electron
AC’ 0 -0.5 -0.5 l.h. antineutrino
B’C 0 -0.5 0 l.h. sterile neutrino
A’C 0 0.5 0.5 r.h neutrino
BC’ 0 0.5 0 sterile antineutrino
AA -1 -1 -1 W-
A’A’ 1 1 1 W+
B’C’ 1 -0.5 0 l.h. positron
A’C’ 1 0.5 0.5 r.h. positron
non-standard model:
AB -1 0 -0.5 quasi-electron?
A’B’ 1 0 0.5 quasi-positron?
B’B’ 1 -1 0 l.h. W+ ?
BB -1 1 0 r.h. W- ?
AA’ 0 0 0 scalar particle
BB’ 0 0 0 scalar particle
CC’ 0 0 0 scalar particle
CC -1 0 0 spinless electron
C’C’ 1 0 0 spinless positron
AB’ 0 -1 -0.5 quasi-photon?
A’B 0 1 0.5 quasi-photon?

 

 

Four preon units (electron, photon, neutrino)   

 

The four-unit combinations are the smallest combinations for the photon and higgs particles and the four-unit block is taken here as the smallest form of any elementary particle.  For example a left-handed electron could be ACAA’ or ACBB’ or ACCC’.

 

Preon units Electric charge Spin Weak isospin Particle name
ACx1 -1 -0.5 -0.5 l.h.  electron
BCx1 -1 0.5 0 r.h. electron
A’C’x1 1 0.5 0.5 r.h. positron
B’C’x1 1 0.5 0.5 l.h. positron
AC’x1 0 -0.5 -0.5 l.h. antineutrino
BC’x1 0 0.5 0 r.h.sterile antineutrino
A’Cx1 0 0.5 0.5 r.h. neutrino
B’Cx1 0 -0.5 0 l.h. sterile neutrino
B’B’CC 0 -1 0 photon
BBC’C’ 0 1 0 photon
non-standard model:
x2 0 0 0 scalar particle or axion
ABC’C’ 0 0 -0.5 Higgs-like particle
A’B’CC 0 0 +0.5 Higgs-like particle

where x1=any one of three pairs: AA’ or BB’or CC’

where x2= any two pairs from AA’ or BB’or CC’,  e.g.  AA’AA’ or AA’BB’ or BB’CC’

Hence there are 3 forms reperented by an x1, 9 forms represented by an x2 , and 3n forms represented by xn.

 

The higher generations of particles which follow use the above basic forms plus the addition of scalar pairs of preon units.  Quarks are dealt with later in the paper.

Eight preon units (Z, W)   

Preon units Electric charge Spin Weak isospin Particle name
AAx3 -1 -1 -1 l.h. W-
A’A’x3 1 1 1 r.h. W+
B’B’CCx2 0 -1 0 Z
BBC’C’x2 0 1 0 Z
non-standard model:
x4 0 0 0 scalar particle or axion
ABC’C’x2 0 0 -0.5 Higgs-like particle
A’B’CCx2 0 0 0.5 Higgs-like particle

where x2= any two pairs from AA’ or BB’or CC’,  e.g.  AA’AA’ or AA’BB’ or BB’CC’

where x3= any three pairs from AA’ or BB’or CC’,  e.g.  AA’AA’BB’ or AA’BB’CC’

where x4= any four pairs from AA’ or BB’or CC’,  e.g.  AA’AA’BB’CC’

 

Twelve preon units (muon, muon neutrino)

Preon units Electric charge Spin Weak isospin Particle name
ACx5 -1 -0.5 -0.5 l.h. muon-
BCx5 -1 0.5 0 r.h. muon-
AC’x5 0 -0.5 -0.5 l.h. muon antineutrino
B’Cx5 0 -0.5 0 l.h. muon neutrino
BC’x5 0 0.5 0 r.h. muon antineutrino
A’Cx5 0 0.5 0.5 r.h. muon neutrino
B’C’x5 1 -0.5 0 l.h. muon+
A’C’x5 1 0.5 0.5 r.h. muon+
non-standard model:
x6 0 0 0 scalar particle or axion
ABC’C’ x4 0 0 -0.5 Higgs-like particle
A’B’CC x4 0 0 +0.5 Higgs-like particle

where xn= any n pairs from AA’ or BB’or CC’

Sixteen preon units (gluon, Higgs)

Preon units Electric charge Spin Weak isospin Particle name
B’B’CCx6 0 -1 0 gluon
BBC’C’x6 0 1 0 gluon
ABC’C’x6 0 0 -0.5 Higgs
A’B’CCx6 0 0 0.5 Higgs
x8 0 0 0 scalar particle or axion

where x6 = any six pairs from AA’ or BB’or CC’,  e.g.  AA’AA’BB’BB’BB’CC’

where x8 = any four pairs from AA’ or BB’or CC’,  e.g.  AA’AA’AA’BB’BB’CC’CC’CC’

 

Twenty preon units (tauon and tauon neutrino)

Preon units Electric charge Spin Weak isospin Particle name
ACx9 -1 -0.5 -0.5 l.h. tauon-
BCx9 -1 0.5 0 r.h. tauon-
B’Cx9 0 -0.5 0 l.h. tauon neutrino
BC’x9 0 0.5 0 r.h. tauon antineutrino
A’Cx9 0 0.5 0.5 r.h. tauon neutrino
AC’x9 0 -0.5 -0.5 l.h. tauon antineutrino
B’C’x9 1 -0.5 0 l.h. tauon+
A’C’x9 1 0.5 0.5 r.h. tauon+
non-standard model:
x10 0 0 0 scalar particle or axion
ABC’C’ x8 0 0 -0.5 Higgs-like particle
A’B’CC x8 0 0 +0.5 Higgs-like particle

where xn= any n pairs from AA’ or BB’or CC’

 

Three colour sub-units plus three units (up quark, down quark)

Preon unit andsub-units Electric charge Spin Weak isospin ParticleColour Particle name
ACgCbC’r’X1 -0.7 -0.5 -0.5 r’ LH antiup
AC’g’CbCrX1 -0.7 -0.5 -0.5 g’ LH antiup
ACgC’b’CrX1 -0.7 -0.5 -0.5 b’ LH antiup
BCgCbC’r’ X1 -0.7 0.5 0 r’ RH antiup
B C’g’CbCrX1 -0.7 0.5 0 g’ RH antiup
B CgC’b’CrX1 -0.7 0.5 0 b’ RH antiup
AC’g’CrC’b’ X1 -0.3 -0.5 -0.5 r LH down
ACgC’r’C’b’ X1 -0.3 -0.5 -0.5 g LH down
AC’g’C’r’Cb X1 -0.3 -0.5 -0.5 b LH down
BC’g’CrC’b’ X1 -0.3 0.5 0 r RH down
BCgC’r’C’b’ X1 -0.3 0.5 0 g RH down
BC’g’C’r’Cb X1 -0.3 0.5 0 b RH down
B’CgCbC’r’ X1 0.3 -0.5 0 r’ LH antidown
B’C’g’CbCr X1 0.3 -0.5 0 g’ LH antidown
B’CgC’b’Cr X1 0.3 -0.5 0 b’ LH antidown
A’CgCbC’r’ X1 0.3 0.5 0.5 r’ RH antidown
A’C’g’CbCr X1 0.3 0.5 0.5 g’ RH antidown
A’CgC’b’Cr X1 0.3 0.5 0.5 b’ RH antidown
B’C’g’CrC’b’ X1 0.7 -0.5 0 r LH up
B’CgC’r’C’b’ X1 0.7 -0.5 0 g LH up
B’C’g’C’r’Cb X1 0.7 -0.5 0 b LH up
A’C’g’CrC’b’ X1 0.7 0.5 0.5 r RH up
A’CgC’r’C’b’ X1 0.7 0.5 0.5 g RH up
A’C’g’C’r’Cb X1 0.7 0.5 0.5 b RH up

where x1= any one pair from AA’ or BB’or CC’.

 

Three colour sub-units plus eleven units (charm quark, strange quark)

Preon unit andsub-units Electric charge Spin Weak isospin ParticleColour Particle name
ACgCbC’r’X5 -0.7 -0.5 -0.5 r’ LH anticharm
AC’g’CbCrX5 -0.7 -0.5 -0.5 g’ LH anticharm
ACgC’b’CrX5 -0.7 -0.5 -0.5 b’ LH anticharm
BCgCbC’r’ X5 -0.7 0.5 0 r’ RH anticharm
B C’g’CbCrX5 -0.7 0.5 0 g’ RH anticharm
B CgC’b’CrX5 -0.7 0.5 0 b’ RH anticharm
AC’g’CrC’b’ X5 -0.3 -0.5 -0.5 r LH strange
ACgC’r’C’b’ X5 -0.3 -0.5 -0.5 g LH strange
AC’g’C’r’Cb X5 -0.3 -0.5 -0.5 b LH strange
BC’g’CrC’b’ X5 -0.3 0.5 0 r RH strange
BCgC’r’C’b’ X5 -0.3 0.5 0 g RH strange
BC’g’C’r’Cb X5 -0.3 0.5 0 b RH strange
B’CgCbC’r’ X5 0.3 -0.5 0 r’ LH antistrange
B’C’g’CbCr X5 0.3 -0.5 0 g’ LH antistrange
B’CgC’b’Cr X5 0.3 -0.5 0 b’ LH antistrange
A’CgCbC’r’ X5 0.3 0.5 0.5 r’ RH antistrange
A’C’g’CbCr X5 0.3 0.5 0.5 g’ RH antistrange
A’CgC’b’Cr X5 0.3 0.5 0.5 b’ RH antistrange
B’C’g’CrC’b’ X5 0.7 -0.5 0 r LH charm
B’CgC’r’C’b’ X5 0.7 -0.5 0 g LH charm
B’C’g’C’r’Cb X5 0.7 -0.5 0 b LH charm
A’C’g’CrC’b’ X5 0.7 0.5 0.5 r RH charm
A’CgC’r’C’b’ X5 0.7 0.5 0.5 g RH charm
A’C’g’C’r’Cb X5 0.7 0.5 0.5 b RH charm

where x5= any five pairs from AA’ or BB’or CC’.

 

Three colour sub-units plus nineteen units (top quark, bottom quark)

Preon unit andsub-units Electric charge Spin Weak isospin ParticleColour Particle name
ACgCbC’r’X9 -0.7 -0.5 -0.5 r’ LH antitop
AC’g’CbCrX9 -0.7 -0.5 -0.5 g’ LH antitop
ACgC’b’CrX9 -0.7 -0.5 -0.5 b’ LH antitop
BCgCbC’r’ X9 -0.7 0.5 0 r’ RH antitop
B C’g’CbCrX9 -0.7 0.5 0 g’ RH antitop
B CgC’b’CrX9 -0.7 0.5 0 b’ RH antitop
AC’g’CrC’b’ X9 -0.3 -0.5 -0.5 r LH bottom
ACgC’r’C’b’ X9 -0.3 -0.5 -0.5 g LH bottom
AC’g’C’r’Cb X9 -0.3 -0.5 -0.5 b LH bottom
BC’g’CrC’b’ X9 -0.3 0.5 0 r RH bottom
BCgC’r’C’b’ X9 -0.3 0.5 0 g RH bottom
BC’g’C’r’Cb X9 -0.3 0.5 0 b RH bottom
B’CgCbC’r’ X9 0.3 -0.5 0 r’ LH antibottom
B’C’g’CbCr X9 0.3 -0.5 0 g’ LH antibottom
B’CgC’b’Cr X9 0.3 -0.5 0 b’ LH antibottom
A’CgCbC’r’ X9 0.3 0.5 0.5 r’ RH antibottom
A’C’g’CbCr X9 0.3 0.5 0.5 g’ RH antibottom
A’CgC’b’Cr X9 0.3 0.5 0.5 b’ RH antibottom
B’C’g’CrC’b’ X9 0.7 -0.5 0 r LH top
B’CgC’r’C’b’ X9 0.7 -0.5 0 g LH top
B’C’g’C’r’Cb X9 0.7 -0.5 0 b LH top
A’C’g’CrC’b’ X9 0.7 0.5 0.5 r RH top
A’CgC’r’C’b’ X9 0.7 0.5 0.5 g RH top
A’C’g’C’r’Cb X9 0.7 0.5 0.5 b RH top

where x9= any nine pairs from AA’ or BB’or CC’.

 

Conclusion

The paper shows a model for building elementary particles from six neutral-colour units and six coloured sub-units of preons.  The units are buit up from 48 different types of preon.

 

The sterile neutrino is in the list of particles, as is the Higgs and some completely scalar particles (or axion bosons).  There are spinless bosons and spinless fermions in each generation of particles.   In the higher generations, there are many combinations of spin with weak isospin, not listed in this paper, which are not found so frequently in the early generations, e.g. spin -3.5 with weak isospin -1.5.  There are elementary particles found, but not listed here, listed with absolute values of electric charge greater than 1.

 

 

 

 

 

20 January 2014

Revised 22 May 2014 (Revised labelling of neutrinos and antineutrinos)

Revised 29 September 2014 (to include the term axion and to amend a typo in the forms of the RH d’, RH s’ and RH b’ antiquarks)

Manchester

England

Posted in physics | Tagged , , , , , , , , , , , , , , , , , , , | Leave a comment

Dice game to generate elementary particles in Preon Model 5

Attached is an Excel 2007 (.xlsm) file which uses Virtual Basic software to allow virtual dice to be rolled. Different combinations of rolled dice generate different elementary particles, according to my Preon Model 5.

Dice game for Model 5 elementary particles

Just download the file and click on appropriate buttons to roll the dice.
4 big dice give electrons, photons and neutrinos.
8 big dice give the  Z and W.
12 big dice give the muon and muon neutrino.
16 big dice give the higgs and gluon.
20 big dice give the tauon and tauon neutrino.
3 small dice and three big dice give the up and down quarks
3 small dice and eleven big dice give the charm and strange quarks
3 small dice and nineteen big dice give the top and bottom quarks.
Have fun!
Ben6993
Manchester
England
1 January 2014
(Revised and renamed 14 January 2014)
Posted in physics | Tagged , , , , , , , , , , , , , , , , | 1 Comment

Family trees for elementary particles

Here is an excel file showing the family tree for elementary particles based on a modified preon/string structure: particle structures

Only the following particles are included at present: electron and positron,  up and down quarks, neutrinos including sterile neutrino, W,  Z and dark matter.  The preon structures for muon, tauon and associated neutrinos and strange, charm, bottom and top quarks, colour charge operators and Higgs are known and will follow asap. Dark matter also occurs in different generations.

There are 24 preons in each of the electron and positron,  up and down quarks, neutrinos and dark matter.  The W and Z each have 48 preons.

Each sheet on the Excel file shows details of each preon/string in a particle. There are 60 different qualities or state of a preon/string e.g. a string could be: L’ r + 0  i.e. a Left handed or screw-like preon.  The r indicates a red colour charge.  The ‘ indicates that it is an antimatter preon. The + indicates that it has + spin.  The 0 indicates that it has no weak isospin.  Such a structure would automatically be known to have negative electric charge as that is associated with L’.

The electron appears to be static in the spreadsheet, but preons/strings move at speed c. Each colour charge inhabits a separate 4D so that makes a 12D space, at least, for each particle. In an electron, the three colour branes are twisting continually around one another in a triple helix in 12D.

The spreadsheets include snapshots from ancestry family tree software, where the smaller structures (ie 24-preon particles) split off from bigger structures (48-preon particles, e.g. W and Z) and the 48-preon particles split off from 96-preon particles (e.g. Higgs and gluons), and so on, showing where the higgs fits in the family with the other elementary particles.

 

 

Posted in physics, Uncategorized | Tagged , , , , , , , , | Leave a comment

Here is an excel file (.xlsm) including visual basic code pair production

The program code ‘generates’  a fermion at random when you click on the “make” button.  It shows the electric charge and colour charge of the fermion and the name of the particle.  It also makes a cumulative count of the number of types of particle produced.

Note that a hypothetical dark matter particle, with zero electric and colour charge,  is suggested.    A dark matter particle is produced more frequently than an electron but less frequently than a quark.

Note also that electrons and positrons and dark matter particles in this model are not colourless but are symmetric in the three colours.   I.e. the three colours appear in equal measure.  Also a coloured quark is not wholly composed of one single colour or anticolour but has an imbalance in favour of one colour or anticolour.

Ben

(Post revised 9 July 2013 to include colour charge)

(Post revised 11 July 2013 )

(Post revised 12 July 2013)

Link | Posted on by | Leave a comment