Particle Interactions in Ben6993’s Preon Model #5

Particle Interactions in Ben6993’s Preon Model #5

Preons

Preon model #5 is described in detail in Preon model 5: the building blocks of elementary particles.  Preons can be grouped into neutral-coloured units and coloured sub-units, and only these units/sub-units need to be considered in interactions, as a preon in a unit/sub-unit is forever in that unit/sub-unit.

Elementary particles can have the following properties: (electric charge, [chiral] spin, weak isospin, colour charge).  Particles also have a specific number of units/sub-units.  The total properties of a particle can be obtained by summing properties across all of its unit/sub-units.

 

Preon Units and Sub-Units

To assist in calculating the properties of particles by summing across units/sub-units, the following table shows the properties of the individual units/sub-units.

 

Table of properties of preon units and sub-units

 

Unit/sub-unit Number of preons Electric charge Spin Weak isospin Colour
A 24 -1/2 -1/2 -1/2 neutral
B 24 -1/2 +1/2 0 neutral
C 24 -1/2 0 0 neutral
A’ 24 +1/2 +1/2 +1/2 neutral
B’ 24 +1/2 -1/2 0 neutral
C’ 24 +1/2 0 0 neutral
Cr 8 -1/6 0 0 red
Cg 8 -1/6 0 0 green
Cb 8 -1/6 0 0 blue
C’r’ 8 +1/6 0 0 antired
C’g’ 8 +1/6 0 0 antigreen
C’b’ 8 +1/6 0 0 antiblue


 ‘ denotes antimatter

To check that the properties of the units are correct, one needs to refer to Preon model 5: the building blocks of elementary particles  where the properties of the individual preons are listed together with tables showing which preons are contained in which unit/sub-units.

 

Summary of interactions considered

  1.   e-   –>   e-  +  γ
  2.   e-  +  γ –>   e-
  3.   e-  + e+ –>    γ
  4.   e-  + e+ –>    vacuum
  5.   νe –> Z + νe
  6.   d –>  d + g
  7.   d –> W- + u
  8.   W-  –> e- + ν’e
  9.   Z –> e- + e+
  10. t –> W+ + b
  11. t –> W+ + s
  12. t –> W+ + d
  13. Z –> νe + ν’e
  14. Z –> d + d’
  15. H –> Z + Z
  16. H –>  W-  +  W+
  17. Electron antineutrino –> sterile muon antineutrino
  18. Muon antineutrino –> sterile tau antineutrino
  19. Sterile electron antineutrino –> muon antineutrino
  20. Sterile muon antineutrino –> tau antineutrino
  21. Gluon interactions

Interactions

1.  e-   –>   e-  +  γ

Parentheses are: (electric charge, spin, weak isospin)

(-1, -0.5, -0.5) –> (-1, 0.5, 0) + (0, -1, 0)

LH electron –>  RH electron + γ-

However, 4 preon units    –>    4 units   +   4 units   is unbalanced in preon numbers, and also the weak isospins do not balance, so a complete interaction is:

(0, 0, 0.5) + (-1, -0.5, -0.5) –> (-1, 0.5, 0) + (0, -1, 0)

¼ Higgs+   +  LH electron –>  RH electron + γ-

Where ¼Higgs+ has the same properties as the Higgs+ {i.e. no electric charge and no spin and weak isospin of +0.5}  but with only ¼ of its preons.

 

So we have:

A’B’CC + ACBB’  –>  BCAA’ + B’B’CC

I.e. ¼ Higgs+   +  LH electron –>  RH electron + γ-

 

2.  e-  +  γ –>   e- 

Parentheses are: (electric charge, spin, weak isospin)

 

(-1, -0.5, -0.5) + (0, 1, 0) –> (-1, 0.5, 0)

LH electron + γ+  –>  RH electron

However, 4 preon units  +   4 units     –>    4 units   is unbalanced, and also the weak isospins do not balance, so a complete interaction is:

(-1, -0.5, -0.5)   + (0, 1, 0)  –> (-1, 0.5, 0)   + (0, 0, -0.5)

LH electron   + γ+  –>  RH electron + ¼ Higgs-

ACAA’  + BBC’C’ –>  BCAA’ + ABC’C’

 

Note that a LH electron can be any one of three forms:

ACAA’,  ACBB’ or ACCC’.  The forms AA’, BB’ and CC’ are neutral in properties and act like neutral ‘bulk filler’ content.

 

3.  e-  + e+ –>    γ

Parentheses are: (electric charge, spin, weak isospin)

(-1, -0.5, -0.5)   +(1, -0.5, 0)    –>  (0, -1, 0)   + (0, 0, -0.5)

LH electron   + LH positron    –>   γ-   +   ¼ Higgs-

For example, ACBB’ + B’C’CC’  –>  B’B’CC + ABC’C’

 

4.  e-  + e+ –>    vacuum

Parentheses are: (electric charge, spin, weak isospin)

(-1, -0.5, -0.5)   +(1, 0.5, 0.5)    –>  (0, 0, 0)

4 preon units + 4 preon units –>  8 preon units

LH electron   + RH positron –>  vacuum (second generation axion boson)

For example, ACBB’ + A’C’CC’  –>  AA’BB’CC’CC’

where AA’ BB’ CC’ CC’ is a completely neutral axion and returns to the vacuum.

 

5.  νe –> Z + νe

Parentheses are: (electric charge, spin, weak isospin)

(0, 0.5, 0.5) + (0, 0, -0.5)  –>  (0, 1, 0)   +  (0, -0.5, 0)

RH νe  +  ½Higgs-    –>    Z+  +  LH  νe

For example, A’CAA’ + ABC’C’BB’AA’   –>  BBC’C’AA’AA’ + B’CAA’

4 units + 8 units   –>  8 units + 4 units

 

6.  down –>  down + gluon

Parentheses are: (electric charge, spin, weak isospin, colour)

(-0.33, -0.5, -0.5, red) + (0, 0, 0.5)  –> (-0.33, 0.5, 0, red) + (0, -1, 0)

red L.H. d  +  Higgs+    –>    red R.H. d  +  g-

For example, AC’g’CrC’b’ BB’ + A’B’CC AA’ BB’ CC’ AA’ BB’ CC’   –>

BC’g’CrC’b’ AA’ +  B’B’CC AA’ BB’ CC’ AA’ BB’ CC’

4 units + 16 units   –>  4 units + 16 units

 

7.  down  –>  W-  +  up

Parentheses are: (electric charge, spin, weak isospin, [colour if applicable])

(0, 0, 0) +  (-0.33, -0.5, -0.5, red)  –> (-1, -1, -1) + (0.67, 0.5, 0.5, red)

vacuum + red L.H. down               –>    W-   +  red RH up

8 preon units  +    4 units              –>   8 units  +  4 units

For example, AA’ BB’ CC’ AA’ + AC’g’CrC’b’ AA’ –>  AA AA’ BB’ CC’  +  A’C’g’CrC’b’ AA’

 

8.  W-  –> e- + ν’e

Parentheses are: (electric charge, spin, weak isospin)

(-1, -1, -1)  –> (-1, -0.5, -0.5) + (0, -0.5, -0.5)

W-  –> LH e- + LH ν’e

8 units    –>  4 units  +  4 units

For example, AA AA’ BB’ CC’   –> ACBB’ + AC’ AA’

 

9.  Z –> e- + e+

Parentheses are: (electric charge, spin, weak isospin)

Z-  + ¼H-  –>  LH e-  +  LH e+  +  vacuum (or first generation axion boson)

(0, -1, 0)  +(0, 0, -0.5) –> (-1, -0.5, -0.5) + (1, -0.5, 0) + (0, 0, 0)

8 units   + 4 units         –>  4 units   +   4 units   + 4 units

For example, B’B’CC AA’ BB’   +  ABC’C’   –>   AC CC’   +  B’C’ BB’ +     AA’ BB’

 

10.  top –> W+ + bottom

Parentheses are: (electric charge, spin, weak isospin, [colour if applicable])

(0, 0, 0) +  (0.67, 0.5, 0.5, red)  –> (1, 1, 1) + (-0.33, -0.5, -0.5, red)

vacuum + red R.H. top               –>    W+   +  red LH bottom

8 preon units  +    20 units              –>   8 units  +  20 units

For example, AA’ BB’ CC’ AA’ + A’C’g’CrC’b’ AA’ BB’CC’AA’BB’CC’AA’BB’CC’ –>  A’A’ AA’ BB’ CC’  +  AC’g’CrC’b’ AA’BB’CC’AA’BB’CC’AA’BB’CC’

 

11.  top –> W+ + strange

Parentheses are: (electric charge, spin, weak isospin, [colour if applicable])

0.67, 0.5, 0.5, red)  –> (1, 1, 1) + (-0.33, -0.5, -0.5, red)

red R.H. top               –>    W+   +  red LH strange

20 units              –>   8 units  +  12 units

For example,  A’C’g’CrC’b’ AA’ BB’CC’AA’BB’CC’AA’BB’CC’ –>  A’A’ AA’ BB’ CC’  +

AC’g’CrC’b’ BB’CC’AA’BB’CC’

 

12.  top –> W+ + down

Parentheses are: (electric charge, spin, weak isospin, [colour if applicable])

(0.67, 0.5, 0.5, red)  –> (1, 1, 1) + (-0.33, -0.5, -0.5, red)  +(0, 0, 0)

red R.H. top               –>    W+   +  red LH down +  vacuum (or second generation axion                                                                                                                                                        boson)

20 units              –>   8 units  +  4 units    +  8 units

For example,  A’C’g’CrC’b’ AA’ BB’CC’AA’BB’CC’AA’BB’CC’ –>  A’A’ AA’ BB’ CC’  +

AC’g’CrC’b’ BB’   +  CC’AA’BB’CC’

 

13.  Z –> νe + ν’e

Parentheses are: (electric charge, spin, weak isospin)

Z-  + ¼H-  –>  LH ν’e +  LH νe +  vacuum (or first generation axion boson)

(0, -1, 0)  +(0, 0, -0.5) –> (0, -0.5, -0.5) + (0, -0.5, 0) +(0, 0, 0)

8 units   + 4 units         –>  4 units   +   4 units   + 4 units

For example, B’B’CC AA’ BB’   +  ABC’C’   –>   AC’ CC’   +  B’C BB’ +     AA’ BB’

 

14.  Z –> d + d’

Parentheses are: (electric charge, spin, weak isospin, [colour if applicable])

 

Z-  + ¼H-  –>  red LH d +  antired LH d’ +  vacuum (or first generation axion boson)

(0, -1, 0)  +(0, 0, -0.5) –> (-0.33, -0.5, -0.5, red) + (0.33, -0.5, 0, antired) +(0, 0, 0)

8 units   + 4 units         –>  4 units   +   4 units   + 4 units

For example, B’B’CC AA’ BB’   +  ABC’C’   –>   AC’g’CrC’b’ X +  B’CgCbC’r’ X  +     AA’ BB’

{Note that C’g’CrC’b’ + CgCbC’r’ = CrCgCb C’r’C’g’C’b’ = CC’}

So,  B’B’CC AA’ BB’   +  ABC’C’   –>   AB’CC’ BB’CC’    +     AA’ BB’

 

15.  Higgs –> Z + Z

Parentheses are: (electric charge, spin, weak isospin)

 

H-   + ¼H+   –> Z-  +  Z+  +  vacuum (or first generation axion boson)

(0, 0, -0.5) + (0, 0, 0.5)   –>  (0, -1, 0) + (0, 1, 0) + (0, 0, 0)

16 units  + 4 units  –>  8 units  +  8 units + 4 units

For example, ABC’C’ AA’ BB’ CC’ AA’ BB’ CC’ + A’B’CC   –> B’B’CC AA’ BB’ + BBC’C’ CC’ AA’  +  AA’ CC’

 

16.  Higgs –>  W-  +  W+

Parentheses are: (electric charge, spin, weak isospin)

H-   + ¼H+   –> W-  +  W+  +  vacuum (or first generation axion boson)

(0, 0, -0.5) + (0, 0, 0.5)   –>  (-1, -1, -1) + (1, 1, 1) + (0, 0, 0)

16 units  + 4 units  –>  8 units  +  8 units + 4 units

For example, ABC’C’ AA’ BB’ CC’ AA’ BB’ CC’ + A’B’CC   –> AACC’ AA’ BB’ + A’A’ CC’ CC’ BB’  +  BB’ CC’

 

17.  Electron antineutrino –> sterile muon antineutrino

Higgs+   + LH electron antineutrino –>  sterile muon RH antineutrino + Z-

(0, 0, 0.5) + (0, -0.5, -0.5)   –>   (0, 0.5, 0)   + (0, -1, 0)

16 units  +  4 units               –>   12 units     +  8 units

A’B’CC  BB’AA’BB’CC’AA’BB’  +  AC’ CC’  –>  BC’ CC’ AA’AA’BB’CC’ + B’B’CC AA’BB’

 

18.  Muon antineutrino –> sterile tau antineutrino

Parentheses are: (electric charge, spin, weak isospin)

Higgs +     LH muon antineutrino –>  sterile tau RH antineutrino + Z-

(0, 0, 0.5) + (0, -0.5, -0.5)   –>   (0, 0.5, 0)   + (0, -1, 0)

16 units  +  12 units               –>   20 units     +  8 units

A’B’CC  BB’AA’BB’CC’AA’BB’  +  AC’ CC’AA’BB’CC’AA’  –>

BC’ CC’ AA’AA’BB’CC’AA’BB’CC’AA’ + B’B’CC AA’BB’

 

19.  Sterile electron antineutrino –> muon antineutrino

Parentheses are: (electric charge, spin, weak isospin)

Higgs- + RH sterile electron antineutrino –>  muon LH antineutrino + Z+

(0, 0, -0.5) + (0, 0.5, 0)            –>  (0, -0.5, -0.5) + (0, 1, 0)

16 units  +  4 units               –>   12 units     +  8 units

ABC’C’  BB’AA’BB’CC’AA’BB’  +  BC’ CC’  –>  AC’ CC’ AA’AA’BB’CC’ + BBC’C’ BB’BB’

 

20.  Sterile muon antineutrino –> tau antineutrino

Parentheses are: (electric charge, spin, weak isospin)

Higgs- + RH sterile muon antineutrino –>  tau LH antineutrino + Z+

(0, 0, -0.5) + (0, 0.5, 0)            –>  (0, -0.5, -0.5) + (0, 1, 0)

16 units  +  12 units               –>   20 units     +  8 units

ABC’C’  BB’AA’BB’CC’AA’BB’  +  BC’ CC’AA’BB’CC’AA’  –>

AC’ CC’ AA’AA’BB’CC’AA’BB’CC’AA’ + BBC’C’ BB’BB’

 

21.  Gluon interactions

Parentheses are: (electric charge, spin, weak isospin).

In preon model #5, three forms of the gluon: rr’-gg’, rr’-bb’ and gg’-bb’ are three different faces of one complex structure.  This arises because a red quark in my model is not purely red, but is dominantly red.  And an rr’ pair is completely neutral in colour which could be reassembled into a gg’ pair or a gg’ pair of quarks.

For example B’B’CC gives the basic structure for a photon or gluon with (0, -1, 0)  and BBC’C’ gives the photon or  gluon with the opposite spin: (0, 1, 0).  But the gluon needs to be bulked out with another 6 pairs of neutral preon units, e.g.  B’B’CC plus AA’ BB’ CC’ AA’ BB’ CC’.

Gluon (1) could be say B’B’CC & CC’ & CC’ & AA’ & AA’ & BB’ & BB’

Gluon (2) could be say B’B’CC & CC’ & AA’ & AA’ & AA’ & BB’ & BB’

A  gluon contains enough preons to form a quark within its contents, where:

ACgCbC’r’ & AA’ is an antired antiup antiquark {where AA’ is just one possibility from AA’, BB’ or CC’}

A’C’g’C’b’Cr & AA’ is a red up quark

B’CgC’r’C’b’ & BB’ is a green up quark

BC’g’CrCb & BB’ is an antigreen antiup antiquark

 

The total of the colour sub-units, alone, for these four quarks is:

Cg Cb C’r’ & C’g’ C’b’ Cr’ & Cg C’r’ C’b’ & Cg’ Cr Cb

which is equivalent to  CC’ & CC’.

These four quarks together make AAA’  A’AA’ B’BB’ BBB’ plus the CC’ & CC’,

i.e. makes AA’ AA’ AA’ BB’ BB’ BB’ CC’ CC’  which is eight pairs of neutral units.  This has as many preons as the gluon or the higgs, but is neither:  it is a neutral vacuum particle or field.

For a gluon- to be able simultaneously to play the roles of rr’ and gg’ (i.e. rr’+gg’), it would need CC’ & CC’ in its composition.  Any gluon- must always have CC in its basic composition so an extra C’C’ is needed in its scalar unit pairs, ie it needs CC’ & CC’ as two of its scalar pairs.  So Gluon (1) could do this job.

Gluon (2) only contains the following C units: CC & CC’, so Gluon(2) only has one pair of CC’ units and cannot make a gluon of the form rr’+gg’.  However, Gluon(2)  can use the one CC’ pair to make either a rr’ or a gg’ (or a bb’).  So Gluon(2) can make a gluon of the form rr’-gg’.

 

Pros and Cons – dark matter, lightweight higgs forms and neutral blocks units forming vacuum fields

My earlier preon models were very simple and I took it as axiomatic that:  electron + positron = photon+  +  photon-.  But in these earlier models, first the electric charge was modelled, then gradually the spin was modelled better, and finally the weak isospin was modelled well.  But then the modelling of spin for the bosons had to be corrected.  At that stage the axiomatic assumption that the preons in an e- and e+ could simply be rearranged into the preons of two photons was lost.  That loss of simplicity still seems like a negative feature.  However, it is possibly a positive feature as it requires the use of a ¼higgs to allow an electron to emit a photon [see interaction 1].  That could be a ½higgs or a full higgs depending on what energy is put into the interaction but I have assumed that the ¼ higgs is a possibility in lower energy interactions as the preon model allows a ¼ higgs+ to be made from four units: A’B’CC; the full higgs needing 16 units.

The revision of the boson structure in the model also prevented the original axiomatic assumption for a second reason.  The two photons are: B’B’CC and BBC’C’ which do not contain an A or A’. The left-hand electron and right-hand positron contain the A and A’ respectively and so cannot be formed from preons of photons alone.  Interaction 9 shows how the same feature requires the use of vacuum particles/fields.  The Z particle in model #5 is simply the photon with two extra pairs of neutral preon units, e.g.  photon+AA’BB’ .  Likewise, the gluon is a photon plus six extra pairs of neutral preons, e.g. photon+AA’BB’CC’AA’BB’CC’.  In interaction 9, a ¼higgs-  {i.e. ABC’C’} is one of the particles going into the interaction and a vacuum particle/field (or axion boson) is emitted {AA’BB’}.  The  ¼higgs and ½higgs are candidates for dark matter.  The full higgs was only detected by its decay paths whereas the ¼higgs cannot decay and it is already participating {according to model #5} in ordinary, well known interactions as a silent partner.

 

24 May 2014

(Revised 29 September 2014 to include the term axion for the scalar boson or vacuum)

Manchester, UK

Advertisements
This entry was posted in physics and tagged , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s